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The anatomical connectivity of the human cerebral cortex
resembles a ‘‘small-world’’ architecture, which is characterized
by the coexistence of structurally segregated and integrative
connectivity patterns. However, organizational differences in
networks among individuals remain largely unknown. Here, we
utilize diffusion tensor imaging tractography and graph-theoretical
approaches to investigate the effects of sex and brain size on the
topological organization of human cortical anatomical network.
Weighted cortical networks were constructed from 72 young
healthy participants by measuring anatomical connection densities
between 78 cortical regions. As expected, all participants showed
a small-world topology (high local clustering and short paths
between nodes), which suggests a highly efficient topological
organization. Furthermore, we found that females had greater local
efficiencies than males. Moreover, smaller brains showed higher
local efficiency in females but not in males, suggesting an
interaction between sex and brain size. Specifically, we show that
several brain regions (e.g., the precuneus, precentral gyrus, and
lingual gyrus) had significant associations between nodal centrality
and sex or brain size. Our findings suggest that anatomical network
organization in the human brain is associated with sex and brain
size and provide insights into the understanding of the structural
substrates that underlie individual differences in behavior and
cognition.

Keywords: brain size, connectivity, DTI, gender, graph theory, small-world

Introduction

The human brain is a large complex interconnected system

that is capable of generating and integrating information from

multiple sources in real time (Sporns and Zwi 2004). The study

of anatomical connectivity patterns of the human brain is

thought to be crucial because it can 1) provide information

about relatively invariant brain characteristics which constrain

cortical dynamics and cognitive processes, 2) increase our

understanding of how functional brain states emerge from

underlying structural substrates, and 3) provide mechanistic

insights into how the brain’s function is affected by disruptions

in its structural basis (Sporns et al. 2005).

Recent advances in modern neuroimaging techniques and

graph theory--based network analyses have allowed us to map

the anatomical connectivity patterns of the human brain in

vivo. Using cortical thickness measurements derived from

structural magnetic resonance imaging (MRI), He et al. (2007)

constructed the structural network of the human brain at

a macroscopic level by computing interregional thickness

correlations. Furthermore, they demonstrated that the brain

network follows a ‘‘small-world’’ topology, which is character-

ized by a high degree of local clustering and short path lengths

linking individual network nodes (Watts and Strogatz 1998).

Small-world network theory implies that the structural

network of the human brain is optimally organized to support

both modularized and distributed information processing

(Sporns et al. 2004; Bullmore and Sporns 2009). Importantly,

they also identified several network hubs (i.e., brain regions

showing important influence over information flow between

other nodes in the network) that were predominantly located

in heteromodal association cortical regions, which have long-

distance connections (He et al. 2007; Chen et al. 2008). Such

a morphometry-based network analysis also has recently

revealed abnormal topological patterns in brain diseases such

as Alzheimer’s disease (He et al. 2008), schizophrenia (Bassett

et al. 2008), and multiple sclerosis (He, Dagher, et al. 2009).

The development of diffusion tractography (fiber tracking) has

facilitated noninvasive study of anatomical networks in the

human brain. Deterministic ‘‘streamline’’ tractography based on

diffusion tensor imaging (DTI) techniques allows us to infer the

continuity of fiber bundles from voxel to voxel (Mori and van

Zijl 2002). Several recent studies (Hagmann et al. 2007, 2008),

including ours (Gong et al. 2009), utilized the deterministic

tractography methods to construct anatomical networks of the

human brain by exploring the density or existence of fiber

connections between anatomically distinct brain regions. Using

probabilistic diffusion tractography methods, Iturria-Medina

et al. (2008) established weighted human brain anatomical

networks by characterizing interregional anatomical connec-

tivity probabilities. These anatomical networks consistently

showed a small-world architecture and several embedded

network hubs (e.g., the medial parietal cortex) (Hagmann

et al. 2007, 2008; Iturria-Medina et al. 2008; Gong et al. 2009).

Sex and brain size are 2 key factors that shape neural systems

and account for behavioral and cognitive variability between

individuals. Males score higher on the mental rotation test,

spatial navigation problems, the embedded figures test, and

engineering and physics problems, whereas females perform

better on emotion recognition, social sensitivity, and verbal

fluency (Baron-Cohen et al. 2005). Sexual dimorphism has been

repeatedly demonstrated in brain anatomy, morphology,

metabolism, and neurochemistry (Gur et al. 1982, 1999;

Nishizawa et al. 1997; Good et al. 2001; Allen et al. 2003; Dubb

et al. 2003; Cosgrove et al. 2007). For example, females tend to

have smaller brains than males (Willerman et al. 1991;

Andreasen et al. 1993; Jancke et al. 1997; Cosgrove et al.

2007; Leonard et al. 2008); they also have higher percentages of
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gray matter (GM), even after correcting for brain size (Gur et al.

1999; Good et al. 2001; Leonard et al. 2008). There is also

evidence for constraints of brain size on cerebral structures.

For instance, previous studies have demonstrated an effect of

brain size on brain morphology (e.g., cortical thickness, GM

volume, and cortical folding) and metabolism (Armstrong 1983;

Luders et al. 2002; Rilling 2006; Im et al. 2008; Leonard et al.

2008; Toro et al. 2008). Humans with larger brains show

greater numbers of neurons and glial cells (Samuelsen et al.

2003; Larsen et al. 2006) but lower percentages of GM (Luders

et al. 2002; Im et al. 2008; Leonard et al. 2008). However, it

remains largely unknown whether and how the organizational

patterns of the connections and networks of brain structures

are affected by sex and brain size.

Here, we hypothesized that there are sex- and brain size--

related differences in the patterns of anatomical connectivity in

the human brain. To test our hypothesis, we performed a DTI

tractography study on a large cohort of healthy participants

(72 young adults). After constructing interregional networks

for each participant, we further calculated topological param-

eters using graph-theoretical approaches (e.g., small-world and

nodal centrality theories) and investigated their associations

with sex and brain size.

Materials and Methods

Participants
Seventy-three young healthy volunteers (38 females: 20.9 ± 1.5 years

old, range 18--24 and 35 males: 21.4 ± 2.1 years old, range 18--27)

participated in this study. All are right-handed and had no history of

neurological or psychiatric disorders and never previously participated

in any MRI experiment. Written informed consent was obtained from

each participant, and this study was approved by the Institutional

Review Board of Beijing Normal University Imaging Center for Brain

Research. Data of one male participant (19 years old) was excluded

because the scans did not cover the whole brain; thus, the following

analyses were based on data of the remaining 72 participants.

Image Acquisition
MRI data were acquired using a SIEMENS TRIO 3-T scanner in the

Imaging Center for Brain Research, Beijing Normal University. Partic-

ipants lay supine with their head snugly fixed by straps and foam pads to

minimize head movement. T1-weighted, sagittal 3D magnetization

prepared rapid gradient echo (MP-RAGE) sequences were acquired

and covered the entire brain (128 slices, repetition time [TR] = 2530 ms,

echo time [TE] = 3.39 ms, slice thickness = 1.33 mm, flip angle = 7�,
inversion time [TI] = 1100 ms, field of view [FOV] = 256 3 256 mm2, in-

plane resolution = 256 3 192). Diffusion tensor images were acquired by

using a single-shot echo-planar imaging--based sequence (coverage of

the whole brain, 2.5-mm slice thickness with no interslice gap,

49 axial slices, TR = 7200 ms, TE = 104 ms, 64 diffusion directions with

b = 1000 s/mm2, and an additional image without diffusion weighting

[i.e., b = 0 s/mm2], acquisitionmatrix = 1283 128, FOV = 2303 230mm2).

Network Construction

White and GM Segmentation

White and GM segmentation was implemented by SPM5 (http://

www.fil.ion.ucl.ac.uk/spm/). First, individual structural images

(T1-weighted MP-RAGE images) were coregistered to the b0 images

(in the DTI native space) using a linear transformation (Collignon et al.

1995). The transformed structural images were then segmented into

GM, white matter (WM), and cerebrospinal fluid (CSF) by a unified

segmentation algorithm (Ashburner and Friston 2005). Brain size for

each participant was obtained by computing the total of GM, WM, and

CSF volumes.

Network Node Definition

The procedure of node definition has been described previously

(Gong et al. 2009). Briefly, a nonlinear transformation T from the DTI

native space to the Montreal Neurological Institute (MNI) space was

acquired in the previous unified segmentation step (Ashburner and

Friston 2005). The inverse transformation T
–1 was then used to warp

the automated anatomical labeling (AAL) template from the MNI

space to the DTI native space, a procedure in which discrete labeling

values were preserved by a nearest-neighbor interpolation method

with SPM5 package (Fig. 1). To avoid selecting connected fiber

bundles erroneously in the follow-up procedure when an AAL mask

contained too many WM voxels that were not truly adjacent to the

cortex, WM voxels in the raw AAL cortical mask were removed if no

cortical voxels existed within their 2-mm cubic neighborhood. Using

this procedure, we obtained 78 cortical regions (39 for each

hemisphere, see Supplementary Table 1), each representing a node

of the cortical network.

WM Tractography

To reconstruct WM bundles in the whole cerebral cortex, we

performed the following steps. First, the distortion of diffusion-

weighted images was corrected for effects of eddy currents using an

affine registration (Woods et al. 1998). The diffusion tensor matrix was

then calculated on a voxel-by-voxel basis, and diagonalization was

performed to yield 3 eigenvalues and eigenvectors (Basser and

Pierpaoli 1996). DTI tractography was further implemented using

a continuous streamline-tracking algorithm (Mori et al. 1999). Here,

fiber bundles of the brain were reconstructed with DTI studio-2.4

(Johns Hopkins University, Baltimore, MD) by selecting all WM voxels

as seed voxels for fiber tracking. For each voxel, the orientation of the

largest component of the diagonalized diffusion tensor was assumed to

represent the orientation of the dominant fiber bundles. Tracking was

initiated from the center of the seed voxel and iterated along its

diffusion orientation. When the track entered a new voxel, the iteration

direction was reset to the new voxel’s diffusion orientation. This

tracking procedure traced a fiber f and continued until a voxel

classified as non-WM was reached or until the turning angle between

adjacent voxels was greater than 70�.

Network Edge Definition

Two nodes i and j were connected by an edge e = (i, j) if there was at

least one fiber f with end points in both region. For each edge e, we

calculated the connection density between the end nodes as its weight

w(e) (Hagmann et al. 2008)

wðeÞ= 2

Si + Sj
+

f 2Fe

1

lðf Þ;

where Si and Sj denote the cortical surfaces of AAL regions i and j,

respectively, Fe denotes the set of all fibers connecting regions i and j

and hence contributing to the edge e, and l (f ) denotes the length of

fiber f along its trajectory. As a result, we obtained a weighted

anatomical network for each participant.

Network Analysis

Small-World Properties

The small-world model was originally proposed by Watts and Strogatz

(1998). Small-world networks have highly local clustering (i.e.,

neighboring nodes are connected tightly) and short average paths

(i.e., one node is only a few paths away from any other node in the

network), thereby supporting the coexistence of segregation and

integration. In this study, we investigated small-world properties of

weighted brain networks. The weighted clustering coefficient Cw of

a network is the average of the clustering coefficient over all nodes,

where the clustering coefficient Ci of a node i is defined as the

likelihood that the node’s neighbors are connected with each other

(Onnela et al. 2005) and is expressed as
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Ci=
2

ki ðki – 1Þ
+
j ;k

�
w̃ij w̃jkw̃ki

�1=3
;

where ki is the degree of node i, and w̃ij is the weight, which is scaled

by the sum of all edges weights to control each participant’s cost at the

same level. For isolated nodes or nodes with just one connection, that

is, ki = 0 or ki = 1, the clustering index is defined as Ci = 0. The

weighted clustering coefficient Cw quantifies the extent of local

cliquishness or local efficiency of information transfer of a network

(Watts and Strogatz 1998; Latora and Marchiori 2001).

The path length between node i and node j is defined as the sum of

the edge lengths along this path, where each edge’s length was

obtained by computing the reciprocal of the edge weight, 1
�
w̃ij . The

shortest path length Lij between node i and node j is the length of the

path with the shortest length between the 2 nodes. The weighted

characteristic shortest path length Lw of a network was measured here

by using a ‘‘harmonic mean’’ length between pairs as proposed by

Newman (2003), that is, the reciprocal of the average of the

reciprocals:

Lw=
1

1
N ðN – 1Þ+

N

i=1+
N

j 6¼i
1
Lij

;

where N is the number of nodes. The weighted characteristic shortest

path length Lw quantifies the ability of a network to propagate

information in parallel or the global efficiency (in terms of 1/Lw) of

a network.

The normalized weighted clustering coefficient Ĉw=C real
w

�
C rand
w and

the normalized weighted characteristic path length L̂w=Lrealw

�
Lrandw were

also computed, where C rand
w and Lrandw are the mean weighted clustering

coefficient and the mean weighted characteristic path length of 100

matched random networks that preserve the same number of nodes,

edges, and degree distribution as the real networks (Maslov and

Sneppen 2002), whereas the corresponding weights are redistributed.

The normalized weighted clustering coefficient Ĉw and the normalized

weighted characteristic path length L̂w quantify the local efficiency and

global efficiency ð1=L̂wÞ, corrected for differences in the numbers of

edges and degree distribution across participants since each network is

relative to its own random counterpart. A real network is considered

Figure 1. A flowchart for the construction of cortical anatomical network by DTI. (a) The structural T1-weighted structural image was transformed to DTI native space by a linear
transformation. (b) The transformed T1 image was segmented into GM, WM, and CSF images in the DTI native space by a unified segmentation algorithm. A nonlinear
transformation T from DTI native space to MNI space was created during the unified segmentation. (c) The inverse transformation T�1 was applied to the AAL template in the
MNI space to create the participant-specific AAL mask in the DTI native space. All registrations were implemented in the SPM5 package. (d) All WM fibers were reconstructed in
the whole brain by using DTI deterministic tractography. (e) The connection matrix was created by computing the fiber density between each pair of regions. In the left panel, all
connections are symmetric and displayed with a logarithmic color map; in the middle (sagittal view) and right (axial view) panel, nodes are placed at their respective centers of
mass, and edges are coded according to connection weight.
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small-world if it meets the following criteria:

Ĉw=Creal
w

�
Crand
w � 1 and L̂w=Lrealw

�
Lrandw � 1 (Watts and Strogatz

1998), which means it has much higher local efficiency than random

networks but still approximately preserves the high global efficiency of

the random networks.

Nodal Centrality

The betweenness centrality Bi of a node i is defined as the number of

shortest paths between pairs of other nodes that pass through the node

(Freeman 1977). In this study, we calculated the normalized

betweenness as bi=Bi= <Bi >, where <B > is the average nodal

betweenness of the network. The global centrality measure

bi captures the influence of a node over information flow between

other nodes in the network, and we calculated it here with the

MatlabBGL package (http://www.stanford.edu/~dgleich/programs

/matlab_bgl/).

Statistical Analysis
To determine the relationships between the network parameters

(weighted clustering coefficient Cw, weighted characteristic path

length Lw, normalized weighted clustering coefficient Ĉw, normalized

weighted characteristic path length L̂w, and nodal centrality bi ) and sex

and brain size, a multiple regression analysis was performed. The

network parameters were dependent variables, and the independent

variables were sex (1 for men and –1 for women), brain size, and their

interaction. For significant interactions, Pearson’s correlation coeffi-

cient analysis was further performed between the network parameter

and brain size in each gender group to analyze the simple effect.

A significance level of P < 0.05 was set for all statistical tests.

Uncorrected P values for nodal centrality are reported as exploratory

results in nature.

Results

Sex Effect on Brain Size

We found that women’s brains were significantly smaller than

those of men (t = 2.30, P = 0.02), which is a result consistent

with previous postmortem and MRI studies (Dekaban 1978;

Willerman et al. 1991; Andreasen et al. 1993; Jancke et al. 1997;

Cosgrove et al. 2007; Leonard et al. 2008). One possible

explanation is that females have smaller statures than males

(Peters et al. 1998). However, the difference in brain size

between males and females remains after correcting for height

(Dekaban 1978; Skullerud 1985). Another possible reason for

smaller brain size in females is that females have fewer total

neurons (Pakkenberg and Gundersen 1997; Rabinowicz et al.

1999, 2002), larger neuronal densities (Haug 1987; Witelson

et al. 1995), and higher cortical metabolic rates (expressed per

unit volume) (Hatazawa et al. 1987).

Small-World Cortical Anatomical Networks

We calculated the weighted clustering coefficient (Cw) and the

weighted characteristic path length (Lw) for both the

anatomical networks and 100 corresponding random networks

with the same numbers of nodes, edges, and degree distribu-

tions for each participant. The clustering coefficients of brain

networks are approximately 4 times larger than those of

comparable random networks ðĈw=3:7±0:2Þ, whereas the path

lengths are approximately equivalent to random networks

ðL̂w=1:3±0:04Þ (Table 1). High values of Ĉw and equivalent

L̂w are the 2 main characteristics of small-world networks,

indicating that the anatomical networks of the human brain

have greater local interconnectivity or cliquishness and shorter

mean distances between regions. This result is consistent with

previous anatomical network studies of the human brain

using diffusion tractography (Hagmann et al. 2007, 2008;

Iturria-Medina et al. 2008; Gong et al. 2009).

Relationship between Small-World Parameters and
Sex/Brain Size

Weighted Clustering Coefficient Cw

The multiple regression analysis showed a significant gender

difference in Cw (t = –2.48, P = 0.02) (Fig. 2a) and a significant

negative correlation between Cw and brain size (t = –2.94,

P = 0.004) (Fig. 3a), with a significant interaction between the

2 factors (t = 2.22, P = 0.03). Furthermore, simple-effect analysis

demonstrated a significant correlation between Cw and brain

size in females (r = –0.53, P = 0.0007) but not in males (r = –0.09,

P = 0.61) (Fig. 4a). Thus, sex differences persist in local

efficiency after controlling for brain size differences. Interest-

ingly, we noted that the brain size effect on local efficiency was

not significant in males.

Weighted Characteristic Path Length Lw

There were no significant gender difference in Lw (t = –1.08,

P = 0.28) (Fig. 2b) and there was no significant correlation

between Lw and brain size (t = –0.67, P = 0.50) (Fig. 3b), with no

significant interaction between the 2 factors (t = 1.15, P = 0.25).

These results suggest that the global efficiency of structural

networks of the brain is not affected by sex or brain size.

Table 1
Small-world human cortical anatomical networks

Small-world properties Mean Standard
deviation

Weighted clustering coefficient, Cw 4.0 3 10�4 0.4 3 10�4

Weighted characteristic path length, Lw 732.1 29.9
Weighted clustering coefficient of random network, Crandw 1.1 3 10�4 0.1 3 10�4

Weighted characteristic path length of random network, Lrandw 555.6 13.7
Normalized weighted clustering coefficient, Ĉw 3.7 0.2
Normalized weighted characteristic path length, L̂w 1.3 0.04

Figure 2. Sex effect on small-world properties. Females had greater Cw (a) and
Ĉw (c) in the cortical anatomical networks as compared with males, suggesting
a denser local clustering or cliquishness of connections. There were no significant sex
differences in Lw (b) and L̂w (d).
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Normalized Weighted Clustering Coefficient Ĉw

Analysis showed a trend in gender differences of Ĉw (t = –1.77,

P = 0.08) (Fig. 2c) and a significant negative correlation

between Ĉw and brain size (t = –2.15, P = 0.04) (Fig. 3c), along

with a trend in interaction between the 2 factors (t = 1.87,

P = 0.06). Furthermore, simple-effect analysis showed that

there is a significant correlation between Ĉw and brain size in

females (r = –0.39, P = 0.01) but not in males (r = –0.04, P = 0.81)

(Fig. 4b). These results imply that females with smaller brains

would have higher local network efficiency, whereas that effect

of brain size was not observed in males.

Normalized Weighted Characteristic Path Length L̂w

There were no significant gender differences in L̂w (t = –1.03,

P = 0.31) (Fig. 2d) and no significant correlation between

L̂w and brain size (t = –1.51, P = 0.14) (Fig. 3d) with no

significant interaction between the 2 factors (t = 1.08, P = 0.29).

This implies that the normalized weighted characteristic path

length of the brain structural networks was not affected by sex

or brain size.

Nodal Characteristics and Hub Regions

To identify hub regions in the anatomical network of the

human brain, we examined the normalized nodal betweenness

centrality, bi of the cortical region for each participant and

then averaged across all participants. Nineteen regions were

identified as hubs because of their large values in bi values

(bi > 1.5, i.e., the betweenness value of a node is 1.5 times

greater than the average betweenness of the network) (Fig. 5

and Table 2). These hubs included 12 regions of the

heteromodal or unimodal association cortex (bilateral precu-

neus [PCUN], bilateral dorsolateral superior frontal gyrus

[SFGdor], bilateral superior parietal gyrus [SPG], bilateral

inferior temporal gyrus [ITG], left middle occipital gyrus

[MOG], right lingual gyrus [LING], left medial superior frontal

gyrus [SFGmed], and right middle temporal gyrus [MTG]),

5 regions of the primary motor and sensorimotor cortex

(bilateral precentral gyrus [PreCG], bilateral postcentral gyrus

[PoCG], and left calcarine fissure and surrounding cortex

[CAL]), and 2 regions of the paralimbic cortex (bilateral orbital

part of the inferior frontal gyrus [ORBinf]).

Relationships between Nodal Betweenness and Sex
or Brain Size

Compared with males, females showed significant greater

betweenness centrality in 2 association cortical regions (right

PCUN and right superior occipital gyrus [SOG]) and 1 primary

cortical regions (left PreCG) and significant smaller between-

ness centrality in 1 paralimbic region (right median cingulate

and paracingulate gyri [DCG]) (Fig. 6a and Table 3).

Figure 3. Brain-size effect on small-world properties. Brain size showed significant
negative correlations with Cw (a) and Ĉw (c). There were no significant correlations
between the brain size and Lw (b) or L̂w (d).

Figure 4. The relationships between small-world network parameters and brain size
within female and male groups. The correlation between brain size and Cw (a) or
Ĉw (b) was significant in females but not in males.

Figure 5. Hub regions in the human cortical anatomical networks. Nineteen hub
regions were identified in the cortical network, including 12 regions of the
heteromodal or unimodal association cortex (bilateral PCUN, bilateral SFGdor, bilateral
SPG, bilateral ITG, left MOG, right LING, left SFGmed, and right MTG), 5 regions of
the primary motor and sensorimotor cortex (bilateral PreCG, bilateral PoCG, and left
CAL), and 2 regions of the paralimbic cortex (bilateral ORBinf). Nodes represent
cortical regions and the size of the nodes (i.e., diameter) represents the magnitude
of normalized nodal betweenness centrality (Table 2). A, anterior; P, posterior; L,
left; R, right.
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Brain size was significantly and negatively correlated with

betweenness centrality in 1 association cortical region (left

LING), 1 primary cortical region (right CAL), and 1 paralimbic

region (right ORBinf). Brain size was also significantly and

positively correlated with betweenness centrality in 2 para-

limbic regions (left orbital part of the superior frontal gyrus

[ORBsup] and left medial orbital part of the superior frontal

gyrus [ORBsupmed]) (Fig. 6b and Table 3).

Several brain regions showed significant interactions in nodal

centrality between sex and brain size. Compared with males,

females showed smaller correlations between the brain size

and betweenness centrality in 2 association cortical regions

(right PCUN and right SOG) and 1 primary cortical region (left

PreCG) and greater correlations in 1 paralimbic region (right

DCG) (Fig. 6c and Table 3).

Discussion

In this study, we utilized DTI on a large sample of young

healthy participants to investigate the relationships between

topological organization of human cortical anatomical net-

works and sex and brain size. The anatomical networks of

brains had prominent small-world properties and included

several hub regions, which were predominantly located in

association cortex. Furthermore, we found that females have

higher local efficiency in their cortical anatomical networks

than males. Also, the participants with smaller brains had

higher local efficiency than those with larger brains and that

correlation was found only in females. In addition, we also

noticed that several specific brain regions (e.g., PCUN,

PreCG, LING, and CAL) showed significant associations with

sex and/or brain size in nodal centrality (Table 3). In sum,

we demonstrate for the first time that the anatomical

connectivity patterns of the human cerebral cortex are

associated with sex and brain size, which might provide new

insights into our understanding of the underlying structural

substrate of behavioral and cognitive differences among

individuals.

Figure 6. Sex and brain size effects on nodal characteristics. (a) Compared with males, females showed significant greater betweenness centrality in 2 association cortical
regions (right PCUN and right SOG) and 1 primary cortical region (left PreCG) and significant smaller betweenness centrality in 1 paralimbic region (right DCG). (b) Brain size
showed significantly negative correlation with betweenness centrality in one association cortical region (left LING), 1 primary cortical region (right CAL) and 1 paralimbic region
(right ORBinf), and showed significantly positive correlation with betweenness centrality in 2 paralimbic regions (left ORBsup and left ORBsupmed). (c) Compared with males,
females showed smaller correlations between brain size and betweenness centrality in 2 association cortical regions (right PCUN and right SOG) and 1 primary cortical regions
(left PreCG) and greater correlation in one paralimbic region (right DCG). Nodes represent cortical regions and the size of the nodes (i.e., diameter) represents the significance of
sex and brain size effects (Table 3). A, anterior; L, left; P, posterior; R, right; rBrain size, the relationships between nodal betweenness centrality and brain size; rBrain size_Female, the
relationships between nodal betweenness centrality and brain size in the female group; and rBrain size_Male, the relationships between nodal betweenness centrality and brain size
in the male group.

Table 2
Hub regions in the human cortical anatomical networks

Hub regions Class Normalized
betweenness, bi

MOG.L Association 2.75
LING.R Association 2.46
PreCG.L Primary 2.44
SFGdor.R Association 2.41
PreCG.R Primary 2.21
SPG.R Association 2.19
SPG.L Association 2.14
PCUN.L Association 2.02
ITG.R Association 1.99
SFGdor.L Association 1.98
PoCG.R Primary 1.98
SFGmed.L Association 1.95
ORBinf.L Paralimbic 1.91
PoCG.L Primary 1.77
ITG.L Association 1.68
MTG.R Association 1.65
PCUN.R Association 1.62
CAL.L Primary 1.59
ORBinf.R Paralimbic 1.53

Note: The hub regions (bi[ 1.5) in the human anatomical network were listed in a descending

order of their normalized betweenness centrality, bi. The regions were classified as primary

association and paralimbic as described by Mesulam (1998). L, left; R, right.
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Small-World Anatomical Networks in Humans

Recent studies have demonstrated small-world topologies in

large-scale structural networks in human brain (Hagmann

et al. 2007, 2008; He et al. 2007, 2008; Bassett et al. 2008;

Iturria-Medina et al. 2008; Gong et al. 2009). Consistent with

these studies, we also found the cortical anatomical networks

in our study demonstrated small-world architectures (Watts

and Strogatz 1998) as they had an almost identical path length

ðL̂W � 1Þ but were more locally clustered ðĈW � 1Þ in com-

parison with matched random networks. Together with the

previous findings, our finding suggests that the small-world

topology is a fundamental principle for the structural organi-

zation of complex brain networks. Using computational

modeling simulation approaches, Sporns et al. (2000) have

demonstrated the emergence of a small-world topology when

networks are evolved for the high complexity of dynamic

behavior defined as an optimal balance between local

specialization and global integration. Our findings thus provide

additional support for the hypothesis that the human brain has

evolved into a complex but efficient neural architecture for

maximizing the power of information processing (Sporns et al.

2004; Kaiser and Hilgetag 2006).

Sex and Brain Size Effects on Small-World Cortical
Anatomical Networks

We showed that females have greater local clustering in

cortical anatomical networks as compared with males, which

suggests a denser local clustering or higher local network

efficiency (Fig. 2). Although recent studies have showed that

the human brain networks are structurally and functionally

organized in a small-world fashion (for reviews, see Bullmore

and Sporns 2009; He, Chen, et al. 2009), little is known about

the sex effect on such a network topology. Sex-related

differences in cortical structures of the human brain have

been well documented. For example, Gur et al. (1999) found

that women have a higher percentage of GM and a lower

percentage of WM than men. They also showed, by choosing

brain size--matched participants, that the higher proportions of

GM in females were independent of brain size. This result was

also found by several other groups (Good et al. 2001; Leonard

et al. 2008). Cerebral GM contains neuronal cell bodies,

dendrites, and short protrusions that are important for regional

information processing (Gur et al. 1999; Zhang and Sejnowski

2000). Thus, a higher percentage of GM in females increases

the proportion of tissue available for computational processes,

which provides further support for our finding of high local

network efficiency in females.

We also found that brain size is significantly and negatively

correlated with local clustering (Fig. 3), suggesting that smaller

human brains are more efficient in local information transfer.

Previous studies have demonstrated that brain size is associated

with cortical anatomical characteristics, such as cortical

volume, surface area, and cortical thickness. For instance,

Luders et al. (2002) reported that participants with smaller

brains had relatively larger proportions of GM, even after

correcting for the sex effect, which was further confirmed by

Leonard et al. (2008) and Im et al. (2008). As mentioned above,

a higher percentage of GM corresponds to larger proportion of

tissue available for regional information processing. Thus, our

result of higher local network efficiency in smaller brains is

compatible with the previous studies. However, it is worthy to

note that several theoretical studies have predicted that as

brain size increases, there must be a drop in interhemispheric

connections due to the increasing time constraints of the

transcallosal conduction delay, and consequently, a greater

local clustering of interneuronal connections is required

(Ringo et al. 1994; Anderson 1999). Those studies are

inconsistent with our experimental results. The relationship

between brain size and topological organization of brain

networks needs to be further studied.

Interestingly, we found that there were significant inter-

actions between sex and brain size on local network

efficiency, and further simple-effect tests revealed that the

brain size effect on local efficiency is significant in females but

not in males. Previous studies have suggested different effects

of brain size on the morphologies of anatomical structures

between males and females. For example, Sullivan et al.

(2001) and Leonard et al. (2008) reported that females with

smaller brains have a bigger corpus callosum, but this effect

was not significant in males. Planum temporal lobe sizes

(Leonard et al. 2008) and CSF volumes (Gur et al. 1999) also

depend on brain size in women, whereas in men, they do not.

Leonard et al. (2008) reported both females and males with

smaller brains have higher proportions of GM, but the

relationship is stronger in females than males. This finding

was also confirmed in the current study: The proportion of

GM was significantly correlated with brain size in both the

female group (r = –0.88, P = 3 3 10
–13) and the male group

(r = –0.74, P = 6 3 10
–7). These results are compatible with our

findings of significant correlations between network effi-

ciency and brain size in females. The insignificant correlations

in males could be attributable to their larger brain sizes and

fewer constraints in brain network shaping. Nonetheless, it is

worthy to note that there is also evidence for closer

association between brain size and brain structures in males

than in females. For instance, Gur et al. (1999) reported that

there were more significant correlations between brain size

and the whole WM volume in men than in women. Leonard

et al. (2008) found that the relative size of left Heschl’s gyrus

depends on brain size only in men. These controversial

findings suggest that the role that sex-related differences in

brain size play in shaping brain structures is complicated and

needs further investigation.

Table 3
Sex and brain size effects on regional characteristics

Regions Class t value P value

Main effect of sex
Female[ male PreCG.L Primary �2.34 0.02

PCUN.R Association �2.14 0.04
SOG.R Association �2.02 0.05

Female\ male DCG.R Paralimbic 2.16 0.03
Main effect of brain size
Negatively correlated with brain size ORBinf.R Paralimbic �2.64 0.01

LING.L Association �2.54 0.01
CAL.R Primary �2.11 0.04

Positively correlated with brain size ORBsup.L Paralimbic 2.59 0.01
ORBsupmed.L Paralimbic 2.44 0.02

Interaction of sex and brain size
rBrain size_Female [ rBrain size_Male DCG.R Paralimbic �2.02 0.05
rBrain size_Female \ rBrain size_Male PreCG.L Primary 2.35 0.02

SOG.R Association 2.12 0.04
PCUN.R Association 2.10 0.04

Note: rBrain size_Female, the relationship between nodal betweenness centrality and brain size in the

female group; rBrain size_Male, the relationship between nodal betweenness centrality and brain size

in the male group; L, left; R, right.
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Sex and Brain Size Effects on Nodal Characteristics of
Cortical Anatomical Networks

Nodal betweenness centrality is a network measurement that

captures the influence of a node on information flow between

other nodes in the network. Nodes with high betweenness may

serve as way stations for network traffic or as centers of

information integration (Hagmann et al. 2008). Nineteen hub

regions were identified in the cortical anatomical network

(Fig. 5 and Table 2). They were predominately located in

regions of heteromodal and unimodal association cortices

(PCUN, SFGdor, SPG, ITG, MOG, LING, SFGmed, and MTG)

receiving convergent inputs from multiple other cortical

regions (Mesulam 1998), which suggests that they play pivotal

roles in human structural cortical networks. The findings are in

accordance with several previous studies in which these

association cortical regions have been identified as critical

nodes in both structural and functional brain networks in

humans (Achard et al. 2006; He et al. 2007; Hagmann et al.

2008; Iturria-Medina et al. 2008; Gong et al. 2009) and

nonhuman primates (Sporns and Zwi 2004; Honey et al. 2007).

In this study, we found that there were significant gender

differences on the nodal betweenness centrality of cortical

anatomical networks. Females showed greater nodal centrality

in 2 association cortical regions (PCUN and SOG) and 1 primary

cortical region (PreCG) than those of males, suggesting that

these regions play more important roles in information transfer

within the brain network in females (Fig. 6a and Table 3).

Previous functional brain imaging studies have suggested that

females have higher cerebral glucose metabolism in the PCUN

and PreCG than males (Willis et al. 2002). Structural imaging

studies have found that females showed larger GM volume in

the SOG and PreCG than males (Goldstein et al. 2001; Good

et al. 2001; Luders et al. 2005). The higher glucose metabolism

and larger GM volume in females may indicate more neuronal

processes in these regions, which could explain our finding of

a more significant role in information transfer within the brain

networks constructed from 78 brain regions. In this study, we

also showed that DCG had lower nodal centrality in females. In

a previous structural MRI study, Paus et al. (1996) found that

females had smaller GM volume in the paracingulate sulcus

than males; thus, we could speculate that it might be associated

with the reduced network role of DCG in females demon-

strated in our finding.

Brain size also had significant effect on the nodal centrality

of cortical anatomical networks. We found that smaller brains

showed higher nodal centrality in LING, CAL, and ORBinf

(Fig. 6b and Table 3). Recently, Rilling (2006) showed that the

occipital cortex is much smaller than allometric predictions of

human brain size. Thus, our findings in the occipital lobe (LING

and CAL) are compatible with the previous study. Furthermore,

we showed that smaller brains had lower nodal centrality in

2 prefrontal regions (ORBsup and ORBsupmed) (Fig. 6b and

Table 3), which was consistent with the study of Toro et al.

(2008) showing larger brains associated with more cortical

folding in the prefrontal cortex. We also found significant

interactions between sex and brain size on nodal centrality.

Compared with males, females showed smaller correlations

between brain size and nodal centrality in PCUN, SOG, and

PreCG and greater correlations in DCG (Fig. 6c and Table 3). Of

note, these regions had a large overlap with those showing sex-

related differences in nodal centrality. It is imperative that the

biological mechanisms underlying sexual dimorphisms are

further investigated in the future.

Further Considerations

Many previous studies using neurophysiological and neuro-

imaging data have demonstrated alterations of small-world and

nodal characteristics in development (Fair et al. 2009;

Micheloyannis et al. 2009), in normal aging (Achard and

Bullmore 2007), and for brain disorders (Bassett et al. 2008;

He et al. 2008; Liu et al. 2008; Wang et al. 2009). Recently, Li

et al. (2009) reported that the topological parameters of brain

anatomical networks are associated with intelligence. How-

ever, these studies did not take into account the effects of sex

and brain size. Thus, our results have important implications for

future studies on the topological organization of structural and

functional brain networks.

There are also several issues that need to be further

addressed. First, in the current study, we calculated brain size

as the total volume of GM, WM, and CSF. This processing has

been used in many previous studies (Gur et al. 1999; Luders

et al. 2002; Im et al. 2008). However, several other studies

computed brain size without CSF (Courchesne et al. 2000;

Allen et al. 2002). In this study, we also reanalyzed the effects of

sex and brain size on the small-world parameters of brain

structural networks, using brain size taken as the total of GM

and WM volumes. The results remain similar (Supplementary

Table 2). Second, in this study, we showed effects of sex and

brain size on the connectivity patterns of brain structural

networks. Several recent studies have demonstrated that the

structural connectivity of the human brain is highly correlated

with functional brain connectivity using resting-state func-

tional magnetic resonance imaging (Honey et al. 2009). Thus,

we speculate that the connectivity patterns of functional brain

networks could also be affected by sex and brain size, which

needs to be studied in the future. Third, we found sex and brain

size effects on network parameters in healthy young adults.

Given that topological characteristics of brain networks have

been found to change with normal development and aging

(Achard and Bullmore 2007; Fair et al. 2009; Micheloyannis

et al. 2009), it would be interesting to determine whether sex

dimorphisms and brain size effects exist in other age groups

and whether sex and brain size effects on cortical network

parameters interact with age. Finally, we utilized a DTI

deterministic tractography method to reconstruct human

cortical anatomical networks. Despite being widely used, this

method has a limited capacity for resolving crossed fiber

bundles (Mori and van Zijl 2002). Thus, further work could be

conducted on brain anatomical networks reconstructed by

probabilistic diffusion tractography methods, which have the

advantages of overcoming fiber crossings and robustness to the

image noise (Behrens et al. 2003; Parker and Alexander 2005).

Conclusions

Using DTI tractography and graph-theoretical approaches, we

investigated the relationships between anatomical connectivity

patterns of human cortical networks and sex/brain size. We

found that females had significantly greater local network

efficiencies than males. Moreover, smaller brains showed

higher local efficiency in females but not in males, which

implies an interaction between sex and brain size. We also

showed that several brain regions (e.g., the PCUN, PreCG, and

456 Sex- and Brain-Size Effects on Cortical Networks d Yan et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article-abstract/21/2/449/339313 by N

ational Science and Technology Library -R
oot user on 10 N

ovem
ber 2019

Supplementary Table 2
Supplementary Table 2


LING) had significant associations between nodal centrality and

sex/brain size. Different from previous studies, the present

study provides a network perspective into the understanding of

how human cortical neuroanatomy is associated with sex and

brain size. Our results also have implications for the un-

derstanding of the structural basis underlying the behavioral

and cognitive differences that are related to sex and brain size.

Further work could be conducted to examine how the

topological organization of human cortical anatomical net-

works is altered during normal development and aging as well

as in specific brain disorders, taking the effects of sex and brain

size into account.
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